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Einstein's interior field equations in charged elastic media 

S R Roy and P N Singh 
Department of Mathematics, Banaras Hindu University, Varanasi, India 

Received 5 November 1973, in final form 29 May 1974 

Abstract. In a preceding paper, we obtained a solution of the field equations of general 
relativity for an elastic sphere of constant density. The purpose of the present investigation 
is to obtain a solution of the charged elastic fluid distribution in general relativity. 

1. Introduction 

Inside a material medium, the electromagnetic field is represented by the two tensors 
Fij and M i j  which satisfy Maxwell's equations 

F [ i j . k ]  = O? (1.1) 

Mij,j J ' ,  (1.2) 

J'  being the charged current vector. 
The tensors M'j and J'  can be expressed as 

where cr is the conductivity, pe is the space-charge density, E.' is the four velocity of the 
medium and F and ji are dielectric constant and magnetic permeability. 

The energy-momentum tensor for the electromagnetic field has been assumed to 
be that of Abraham (1909). Thus 

(1.5) 

We define Einstein's interior field equations for charged bodies by taking a linear 
superposition of the energy-momentum tensors of the material field and the electro- 
magnetic field, namely 

E . .  lJ = -~F,irM~,+~gijFr,Mrs+~(cji- l )F lSAs ik (M~J1i j ,+  2Mk'Eii j ) .  

R i j - i R g i j  = -8n(Tj+Eij)  = -8nsij, 

qj = - p&Aj + $!j(&,, - &), 

(1.6) 

where is the energy-momentum tensor of the elastic fluid distribution given by 

(1 .7)  

where the terms have their usual meaning as in our previous paper (Roy and Singh 1973). 
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2. The boundary conditions 

We now consider the possibility of constructing a model consisting of charged matter 
inside a three-dimensional region with an electrostatic field generated outside. We 
assume that in the absence of a charge distribution we get a finite model of neutral matter. 
In the construction of a finite model of charged matter we have to consider two space- 
time regions, namely the region occupied by the matter and the region outside it. In 
a model in which there is an abrupt change from matter to vacuum some discontinuity 
in the smoothness of gij will occur. Such a discontinuity is overcome by satisfying 
certain jump conditions across the surface of separation. For this we assume the con- 
tinuity of the metric potentials and their first derivatives across the surface of separation 
and the only discontinuity allowed is in the second normal derivatives of the metric 
potentials. Further we have to impose the reality conditions (Marder 1964) 

T : > o  and T i  > 0 (2.1) 
inside the material system. In the case of a charged system exactly the same conditions 
have to be satisfied by the metric potentials and the total energy-momentum tensor. 
A linear superposition of the energy momentum tensors of the material field and the 
electromagnetic field is taken to be the representation of the energy-momentum tensor 
of the composite field. 

3. Solutions of the field equations 

We now consider the case of a static, spherically symmetric distribution of charged 
fluid which forms a linear isotropic medium. The space-time representing the fluid 
is spherically symmetric. Its line element can therefore be put in the form 

(3.1) 
where a and fl are functions of r only. 

We also assume that the electromagnetic field is static and spherically symmetric. 
The non-vanishing components of Fij are F14 and F 2 3 .  Since there is no radial magnetic 
field we set F23 equal to zero. Similarly, the non-vanishing components of Mi' are 
M 1 4 .  F14 and M 14 are functions of r alone. 

From (1.6), we see that 

ds2 = e" dr2 + r2(d02 + sin28 dq52)- ep dt2, 

G I 2  = G I 3  = G23 = GI4  = G24 = G34 = 0 

leads to 

11 = A2 = 1, = 0. 
Also, 

(3.2) 

The field equations (1.6) lead to 

4 ~ ( ~ + 2 p ) ( e - " -  1 ) + 4 ~ z e - ( " + ~ ) F ~  
B ' 1  1 

e-"( ;+7) -7 = 1 4 1  (3.4) 
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From (1.2), we find that 
5' = J 2  = 53 = 0. (3.7) 

Equation (1.4) then requires that 0 = 0. Hence a static spherically symmetric charged 
fluid is non-conducting. From equations (l.l), (1.2) and (1.4), we get 

We now assume that 

p, = 3Ae-"l2, (3.9) 

where A is a constant. 
From equations (3.8) and (3.9), we get 

B being a constant. Since we require that F,,  be regular everywhere we set B equal to 
zero. Hence 

r~ 14 e-(a+D)/2 = (3.11) 

The left-hand side is the physical component of the tensor M i j  and as in classical electro- 
magnetic theory it varies as r. 

Substituting the value FI4 in (3.6) and integrating we get 

Taking the density p to be constant, we have 

r2 4 A2 
3 5 r  

e-a = 1-8np- - - -n r r .  

(3.12) 

(3.13) 

From equations (3.4) and (3.13), we have 

r 24 A2 r3 
+-n- + 4nr(v + 2p)( 1 - ea), , 8nP p =- 

3 1 -9npr2 -4n(A2/~)r4 5 z 1 -$npr2 -4n(A2/z)r4 

1 x erp( - C + I 4n(v + 2p)r( 1 -ea) dr (3.14) 
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where 

3 2  =P c =  +-+- 
2 3 [p p +~A2/a)n]"2 '  

Hence the most general spherically symmetric line element in charged elastic media 
is given by 

dr2 + r2(dB2 + sin20 dr#J2) 
5 r  

$c(A2/z)r2 + $ p  + [$n2p2 + fn(A2/r ) ]  
$r(A2/r)r2 +$np-[$n2p2 + i n ( A 2 / r ) ] " 2  

xexp( - C +  /4n(v+Zp)r(l-e")dr dt2 1 (3.15) 

Equation of state for elasticity tensor Chijk is given by 

(3.16) 

It is to be noted that the strained sphere is in equilibrium, external body forces are 
zero and hence the pressure terms are functions of r alone. This is in accordance with 
the classical elasticity theory in which the stresses on an elastic sphere depend on the 
radius when it is subjected to spherically symmetric deformation. 

Outside the fluid sphere the line element is that due to  a spherically symmetric 
charged particle of total charge 4ne, namely 

- T ~ + - ( T : - T ~ : ) + - + T : - T ; )  a 2  P' = 0. 
dr r 

dr2+r2(de2+sin20dr#J2)- 1--+4nT dt2. ( 2: r e2) 
(3.17) 

The non-vanishing component of the electromagnetic tensor F I  for the metric 
(3.17) is F ; ,  given by 

e 
F14 = 7' (3.18) 

The total charge 4ne within the fluid sphere of radius r l  is given by 

4ne = I' 1: 3Ar2 sin 0 dr de d4, (3.19) 

so that 

e 
r:' A = -  (3.20) 

The internal field (3.15) must fit at the boundary with the external field for which 

We thus have the three conditions 
we require that gi j  and T: be continuous at r = r l .  

4 2n A2 e2 
3 5 F  I 1  

m = -xr:p+--r:+2n--, (3.21) 
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and 

+n(A'/e)r: ++p+ [$n2p2 + f n ( A ' / ~ ) ] ' ' ~ )  J;' 
A 2  e = C-4n (v+2p)r(l -e")dr. (3.23) 

+n(A 2/e)r: + +np - [gn p + 3R( / ). 
2 In( 

From (3.21) we determine the value of m when the radius and the density are given. 
Equations (3.22) and (3.23) are two conditions that the function v+2p has to satisfy 
at the boundary. When such a function has been chosen the equation (3.16) then 
uniquely determines the scalars v and p, 

Since e-" is to be positive for all values of r we require that 

Hence 

that is 

3 3e2 
r;' - -rf + - < 0, 87cp 10ep 

and 

This leads to 

(3.24) 

(3.25) 

and 
3e2 pi2 

< r: < -+ ) . (3.26) 
16np i 9  256n2p2 lope 

The condition (3.26) tells us that for a given material density and charge the radius 
of the fluid sphere has both an upper and lower bound. The condition (3.25) states 
that for a given density the total charge has an upper bound. 
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